375 research outputs found

    Ytterbium-doped tantalum pentoxide waveguides: spectroscopy for compact waveguide lasers

    No full text
    Ytterbium-doped materials are common gain media in high-performance laser systems. In this work, the first spectroscopic investigation of ytterbium-doped tantalum pentoxide (Yb:Ta2O5) for compact waveguide laser applications is presented

    Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1

    Get PDF
    Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene structure, resulted in a strain that no longer produced any polycyclic triterpenoids. This strain was able to grow chemoheterotrophically, photoheterotrophically, and photoautotrophically, demonstrating that hopanoids are not required for growth under normal conditions. A severe growth defect, as well as significant morphological damage, was observed when cells were grown under acidic and alkaline conditions. Although minimal changes in shc transcript expression were observed under certain conditions of pH shock, the total amount of hopanoid production was unaffected; however, the abundance of methylated hopanoids significantly increased. This suggests that hopanoids may play an indirect role in pH homeostasis, with certain hopanoid derivatives being of particular importance

    Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence

    Get PDF
    The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16 INK4a locus. We used this allele (p16 tdTom ) for the enumeration, isolation, and characterization of individual p16 INK4a -expressing cells (tdTom + ). The half-life of the knocked-in transcript was shorter than that of the endogenous p16 INK4a mRNA, and therefore reporter expression better correlated with p16 INK4a promoter activation than p16 INK4a transcript abundance. The frequency of tdTom + cells increased with serial passage in cultured murine embryo fibroblasts from p16 tdTom/+ mice. In adult mice, tdTom + cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16 INK4a and found that tdTom + macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16 INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence

    Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Get PDF
    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules—information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific^(13)C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ^(13)C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ^(13)C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects

    Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography–mass spectrometry

    Get PDF
    Hopanoids are triterpenoids produced mainly by bacteria, are ubiquitous in the environment, and have many important applications as biological markers. A wide variety of related hopanoid structures exists, many of which are polyfunctionalized. These modifications render the hopanoids too involatile for conventional gas chromatography (GC) separation, so require either laborious oxidative cleavage of the functional groups or specialized high temperature (HT) columns. Here we describe the systematic evaluation and optimization of a HT–GC method for the analysis of polyfunctionalized hopanoids and their methylated homologs. Total lipid extracts are derivatized with acetic anhydride and no further treatment or workup is required. We show that acid or base hydrolysis to remove di- and triacylglycerides leads to degradation of several BHP structures. DB-XLB type columns can elute hopanoids up to bacteriohopanetetrol at 350 °C, with baseline separation of all 2-methyl/desmethyl homologs. DB-5HT type columns can additionally elute bacteriohopaneaminotriol and bacteriohopaneaminotetrol, but do not fully separate 2-methyl/desmethyl homologs. The method gave 2- to 7-fold higher recovery of hopanoids than oxidative cleavage and can provide accurate quantification of all analytes including 2-methyl hopanoids. By comparing data from mass spectra with those from a flame ionization detector, we show that the mass spectromet (MS) response factors for different hopanoids using either total ion counts or m/z 191 vary substantially. Similarly, 2-methyl ratios estimated from selected-ion data are lower than those from FID by 10–30% for most hopanoids, but higher by ca. 10% for bacteriohopanetetrol. Mass spectra for a broad suite of hopanoids, including 2-methyl homologs, from Rhodopseudomonas palustris are presented, together with the tentative assignment of several new hopanoid degradation products

    Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype

    Get PDF
    BACKGROUND: Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. METHODS: We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. RESULTS: We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. CONCLUSION: This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes

    Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche

    Get PDF
    Molecular fossils of 2-methylhopanoids are prominent biomarkers in modern and ancient sediments that have been used as proxies for cyanobacteria and their main metabolism, oxygenic photosynthesis. However, substantial culture and genomic-based evidence now indicates that organisms other than cyanobacteria can make 2-methylhopanoids. Because few data directly address which organisms produce 2-methylhopanoids in the environment, we used metagenomic and clone library methods to determine the environmental diversity of hpnP, the gene encoding the C-2 hopanoid methylase. Here we show that hpnP copies from alphaproteobacteria and as yet uncultured organisms are found in diverse modern environments, including some modern habitats representative of those preserved in the rock record. In contrast, cyanobacterial hpnP genes are rarer and tend to be localized to specific habitats. To move beyond understanding the taxonomic distribution of environmental 2-methylhopanoid producers, we asked whether hpnP presence might track with particular variables. We found hpnP to be significantly correlated with organisms, metabolisms and environments known to support plant–microbe interactions (P-value<10^−6); in addition, we observed diverse hpnP types in closely packed microbial communities from other environments, including stromatolites, hot springs and hypersaline microbial mats. The common features of these niches indicate that 2-methylhopanoids are enriched in sessile microbial communities inhabiting environments low in oxygen and fixed nitrogen with high osmolarity. Our results support the earlier conclusion that 2-methylhopanoids are not reliable biomarkers for cyanobacteria or any other taxonomic group, and raise the new hypothesis that, instead, they are indicators of a specific environmental niche

    Position-specific ^(13)C distributions within propane from experiments and natural gas samples

    Get PDF
    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific ^(13)C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the ^(13)C/^(12)C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ^(13)C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ^(13)C and then increasing in both center and terminal position δ^(13)C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems

    A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds

    Get PDF
    This presentation addresses some of the safety concerns, and hazards that will be vital to buying down risk
    corecore